

GOOGLE SUMMER OF CODE 2016

GENTOO FOUNDATION
CONTINUOUS STABILIZATION OF GENTOO PACKAGES

Motivation for Project / Goal

Gentoo is an operating system with extreme focus on configurability and performance.

To provide fully customizable experience, without interfering with the stability of the

system, Gentoo has a concept of masked packages. These masked packages (or versions)

are either untested, or are known to be unstable and are installed only if the user

explicitly unmasks them. While this concept is a boon to the stability of the operating

system, the current implementation requires the packages to be tested manually by a

team of developers. This significantly increases the time in which new packages are made

safely available to the users. The goal of this project is to provide a mechanism to test

and stabilize the packages automatically with little or no human intervention.

Expected Results:
Deliverables for mid term evaluation:

● Capability to run stabilization job on pre existing packages using a minimal set of

packages required for a stable Gentoo installation.

● Ability to monitor newly added packages for stabilization, as well as bugzilla to find

packages that haven’t had a reported bug for a sufficiently long period of time.

● Docker images ready that would be used as the Gentoo container for stabilization

scripts for both CI and BOINC clients.

● At least some work done on the post install test framework.

● Documentation for the work done till this point.

Deliverables for final evaluation:

● BOINC server set up and hosted on cloud, responsible for distributing stabilization

jobs to volunteers’ computers.

● BOINC client side scripts ready to receive and execute jobs from the server.

● Docker based package caching system to prevent multiple downloads of same

packages by the BOINC client user.

● Post install test framework to allow package maintainers to include custom scripts

for CI testing after the package has been built and installed.

After the project is completed, given the docker images and stabilization scripts, it should

be possible to keep up with all newly added packages and updates in near real time and

without human intervention. The goal of this project is to reach a point where MOST of

the packages have their latest versions stabilized and unmasked.

Implementation Details:
1. Container:

There are a couple of common problems in Arch testing. Firstly, the environment

in which we build affects how the package will be built a lot. Because of this, we

require the environment to be as clean as possible. Secondly, since the jobs may

need to be run on multiple locations - CI, Gentoo Servers, Volunteer computers -

we need to have identical build conditions for all of them. For this, Docker seems

to be an ideal candidate, since it runs everywhere (including Github’s Travis CI), is

open source, and provides the identical environment to all builds irrespective of

where they are being run.

2. USE Flags:

If a package has ‘n’ number of USE flags, to build the package with all possible

combinations of USE flags would require 2n number of builds. For the packages

with a lot of USE flags, this results in a VERY unrealistic number of total builds. So

for a more realistic number of builds, we build the packages for a certain few

combinations of USE flags.

2

a. Without any USE flag turned on

b. With all USE flags turned on

c. Few random combinations based on default flags, or inverse of default

flags or those generated by tatt.

3. Post Install Test Framework:

Currently, all testing after building and installing a package is done manually.

There isn’t a way for the maintainer to provide scripts for testing of a package post

installation, without human intervention. This test framework would be a wrapper

that would provide a convenient way to write test suites. In this framework,

maintainers would be able to declare dependencies and commands required to

run the test suite as a part of the ebuild, as a separate function like

post_install_test() that would be run only if the package is being installed as a part

of a stabilization job. By allowing the maintainers to come up with suitable test

suites, it should be possible to deliver a completely self stabilizing Gentoo system.

4. Dependencies:

For a package to be stabilized, it can run against the current stable versions of its

dependencies, or trigger the stabilization of the dependencies first, and resume its

own job once all the dependencies have been stabilized.

5. Triggering of stabilization jobs:

Triggering of stabilization jobs can occur whenever a pull request is made that

changes the status of KEYWORDS in any package. However, apart from that the

Gentoo Bugzilla can also be monitored for changes and a record of the last

reported bug for each package (+version) can be kept. The stabilization job can

also be run when no bug is reported for that package in sufficiently long period of

time (either set explicitly by the maintainer or default to a value like 30 days).

3

6. Infrastructure and Computing Power:

The main point in using docker for the builds is that the build process can take

place anywhere. The three places where this would be done is:

a. Travis CI (Github): This would be triggered by keyword changes. The script

run for CI will determine how many packages (including dependencies)

need to be stabilized and how many of those can be stabilized

concurrently. If the number is small, it will try to perform the stabilization

and report to the main server. If the stabilization times out or the number

is large, the task will be transferred to the server for distribution via

BOINC(volunteer computing).

b. Volunteers’ Computers: Using BOINC, a volunteer’s computer can be used

for running the jobs, which is ideal if there are a large number of jobs that

can be stabilized concurrently.

c. Gentoo Infrastructure (BOINC and main server): This would manage the

distribution of jobs to clients and be responsible for updating the

repository for the stabilized packages.

Timeline:

April 22 - May 22

(Community

Bonding Period)

Get familiar with the intricacies in Architecture testing. Communicate

with current Arch testers and get their opinions on the plan of

action. Familiarise with the accepted conventions in the organisation

as well as the technologies to be used in the project.

(Coding conventions, documentation, communication etc)

May 23 - May 30

(Week 1)

Create a script for the evaluation of all dependencies of gentoo

packages. The scripts would also need to resolve the order in which

stabilization would require the minimum number of jobs.

4

May 30 - June 5

(Week 2)

Prepare Docker images for minimal Gentoo builds that would be

used for stabilization using both Travis CI and volunteer computing.

June 5 - June 12

(Week 3)

Setup the server side scripts to receive data from CI (as mentioned

above in 6a) and update the now stabilized packages. Also, if the CI

was unsuccessful, either due to timeout or due to build failures,

report to the person concerned.

June 12 - June 19

(Week 4)

Start work on adding support for custom post-install test

frameworks. Create wrappers for various test frameworks such that

the code for multiple frameworks may be written in a similar syntax.

This would be converted to respective framework’s code during the

CI run.

June 19 - June 26

(Week 5)

(Buffer Period) : Catch up with any work left from previous weeks.

--------Mid Term Evaluation------

June 26 - July 3

(Week 6)

Set up a BOINC server on a cloud hosted Virtual Machine. Start

writing server side scripts for management of job distribution for the

package builds.

Please note that this will require access to either Gentoo

Infrastructure or an Amazon AWS account.

July 3 - July 10

(Week 7)

Continue and complete server side scripts for the BOINC server.

Continue with adding support for test frameworks.

July 10 - July 17

(Week 8)

Complete work on support for test framework. This would include

adding of a new methods to ebuilds for CI testing as well as macros

for the common procedures of running tests on common test

automation frameworks. Start implementing a docker based method

5

to cache downloaded packages without affecting the actual gentoo

docker image.

July 17 - July 24

(Week 9)

Create client side scripts to execute the jobs obtained from the

BOINC server. Integrate BOINC server with the server needed by

Travis CI, for updation of packages after stabilization. Complete the

package caching implementation.

July 24 - July 31

(Week 10)

Testing Phase. Test with various packages, build scenarios, and

stress testing of CI and distributed builds, along with logging of

performance.

July 31 - Aug 7

(Week 11)

Testing Phase.

Aug 7 - Aug 16

(Week 12)

Refine the code to make it more presentable. Add final touches to

the documentation, and ready the project for submission.

Biography:
I am a sophomore Computer Science Undergraduate studying at the Indian Institute of

Technology, Kanpur.

I’m a Linux enthusiast, an avid Developer; and have a plethora of experience with

development in its various manifestations, viz Web, App, Package writing to name a few. I

have above-par knowledge about Linux systems due to my intensely concentrated

experience with Linux since the past few years.

I’ve been a long time user of various Linux distros (starting with Ubuntu, I have since used

Debian, Fedora, Arch, Gentoo, and NixOS). I even went as far as to compile the whole

operating system without a package manager while following the LinuxFromScratch

(http://www.linuxfromscratch.org/lfs/) project. I have been fascinated by Gentoo and

Portage, ever since I forced its (Portage’s) installation in a completed LFS system just to

6

http://www.linuxfromscratch.org/lfs/

see if it would work

(sort of something like this https://forums.gentoo.org/viewtopic-t-28559-start-0.html).

My previous experience includes contributing build recipe for WPS Office package for

NixOS (https://github.com/NixOS/nixpkgs/pull/13155) and writing the debian packaging

scripts for Pathpicker (https://github.com/facebook/PathPicker/pull/117).

Some of the things I have worked on before this, include:

1. Summer project on interpretation and visual simulation of a C program.

(Used: Python, knowledge of C compiler)

a. Github link: https://github.com/pallavagarwal07/its

https://github.com/pallavagarwal07/its_server

b. Demo:

http://www.varstack.com/2015/10/06/Introduction-to-Cimulator/

2. Shuttle cock tracking and trajectory prediction as a part of International Robotics

competition Robocon. (Used : C++, OpenCV)

a. Bitbucket link https://bitbucket.org/robocon15/rcon

3. My Blog (Used: HTML, CSS, JS, Ruby)

a. Github Link: https://github.com/pallavagarwal07/pallavagarwal07.github.io

b. Blog Link: http://www.varstack.com

I was part of the team that came first in Code.Fun.Do, a one day hackathon conducted by

Microsoft in our campus, in both our first and second year.

I have also qualfied the regionals of ACM ICPC (https://icpc.baylor.edu/), as well as the

first level of Build The Shield (https://buildtheshield.microsoft.com/india/).

Contributions:
As a preparation for this project, on communication with the mentors, I have written

basic scripts that estimate the number of stabilization jobs the current tree would require

(http://paste.ubuntu.com/15356039/), as well as evaluate the dependencies of Gentoo

packages and attempts to build it ((http://paste.ubuntu.com/15356041/)).

I also wrote and contributed an ebuild for a simple package

7

https://forums.gentoo.org/viewtopic-t-28559-start-0.html
https://github.com/NixOS/nixpkgs/pull/13155
https://github.com/facebook/PathPicker/pull/117
https://github.com/pallavagarwal07/its
https://github.com/pallavagarwal07/its_server
http://www.varstack.com/2015/10/06/Introduction-to-Cimulator/
https://bitbucket.org/robocon15/rcon
https://github.com/pallavagarwal07/pallavagarwal07.github.io
http://www.varstack.com/
https://icpc.baylor.edu/
https://buildtheshield.microsoft.com/india/
http://paste.ubuntu.com/15356039/
http://paste.ubuntu.com/15356041/

(https://bugs.gentoo.org/show_bug.cgi?id=578116).

For the dependency script, I also built a custom Gentoo Docker Image and ran the above

scripts as a part of Travis CI as a proof of concept.

(https://travis-ci.org/pallavagarwal07/gentoo/builds/114632357)

I have also looked into various helper tools for the packaging systems including, but not

limited to eix, egrep, and tatt.

I have also made a pull request to the github repository gentoo/gentoo to help resolve

Bug#557308 (https://bugs.gentoo.org/show_bug.cgi?id=557308)

Working Hours:
My semester vacations would start from April 29, and end on July 20. During the vacation,

I would be available for work and be online on IRC any time I am awake. However, when

the semester resumes, on July 21, the working hours would be determined by the

schedule of the semester.

Contact:
Phone: +91 7408997854

Email: pallavagarwal07@gmail.com

pallavag@iitk.ac.in

Github: pallavagarwal07

Skype ID: pallavagarwal07

IRC Nick: pallav

(freenode)

Blog: http://www.varstack.com/

Address: A-311

Hall of Residence 2

Indian Institute of Technology

Kanpur, Uttar Pradesh

India - 208016

8

https://bugs.gentoo.org/show_bug.cgi?id=578116
https://travis-ci.org/pallavagarwal07/gentoo/builds/114632357
https://bugs.gentoo.org/show_bug.cgi?id=557308
mailto:pallavagarwal07@gmail.com
mailto:pallavag@iitk.ac.in
http://www.varstack.com/

